

Governing AI, Protecting the Human: Digital Humanism and the Ethics of Scholarly Communication

Anthony Le Duc

Asian Research Center for Religion and Social Communication

St John's University, Thailand

leducsvd.arc@gmail.com

January 2026

Preprint

Abstract

The rapid integration of generative AI tools into academic writing, peer review, and editorial workflows has prompted major scholarly publishers to issue policies governing their use. Yet little is known about the values and assumptions that underpin these emerging policies or how they shape global knowledge production. This study conducts a qualitative comparative analysis of the AI policies of five major publishers to examine how they articulate and regulate human agency, creativity, and responsibility in an era of accelerating automation. The publishers comprise Elsevier, Taylor & Francis, SAGE Publishing, Springer Nature, and Cambridge University Press. Drawing on the framework of digital humanism, the article argues that despite differences in restrictiveness, procedural detail, and disclosure requirements, the five publishers converge on the insistence that AI must enhance rather than replace human judgment. At the same time, divergences in policy depth, enforcement mechanisms, and institutional capacity reflect the challenges of translating humanist principles into concrete practices. The analysis also considers the implications of these policies for scholars in non-English-speaking and under-resourced contexts, where AI tools can both mitigate and exacerbate structural inequities. The article concludes by calling for collaborative, context-sensitive approaches to AI governance in scholarly communication. The paper affirms the need for ongoing dialogue among publishers, researchers, technologists, and relevant stakeholders to ensure that digital innovation and use are guided by human-centered values.

Keywords: *AI policies, academic writing, academic publishing, peer review, digital humanism, AI ethics*

Introduction

Artificial intelligence (AI) has become embedded in many dimensions of contemporary life, and academic knowledge production is no exception. Its rapid development has begun to transform how scholars read, write, and communicate research (Butson & Spronken-Smith, 2024). For many, AI now functions as a practical companion in literature review, idea generation, drafting, translation, and data analysis (Khalifa & Albadawy, 2024). In an environment where

knowledge circulates with unprecedented speed, these tools promise greater efficiency and can ease many routine aspects of writing (Samantaray & Azeez, 2024).

At the same time, the expansion of generative AI raises significant ethical and epistemic questions. Its growing use in academic writing and peer review has intensified debates about authorship, intellectual responsibility, and data privacy. While AI can support data analysis or improve linguistic clarity, its effects on originality, critical reasoning, and scholarly integrity remain uncertain. Recent studies highlight both benefits and risks. Benefits include clearer prose and fewer surface-level errors while risks include homogenized academic expression and a weakening of critical thinking (e.g., Choi et al., 2024; Melisa et al., 2025). For writers composing in a second or third language, AI can offer helpful linguistic support, yet it may also introduce new vulnerabilities when translations flatten nuance or distort meaning. Even native English speakers may experience similar tensions when relying on tools that can subtly reshape rhetorical style.

These complexities have prompted many academic publishers to establish policies governing AI use in writing, peer review, and editorial work. Some publishers outline AI guidance in dedicated documents while others integrate it into broader ethical or editorial guidelines. Although these policies may appear procedural, they also reveal deeper assumptions about what constitutes human authorship, how creativity should be valued, and where the limits of automation ought to lie. This article examines the AI policies of five publishers—Elsevier (2025), Taylor & Francis (2025), Springer Nature (2023), SAGE Publishing (2025), and Cambridge University Press (2023)—paying particular attention to how they conceptualize authorship, originality, and peer review.

The analysis approaches these policies through the framework of digital humanism, which emphasizes human agency, creativity, and responsibility in digital use. This perspective provides a way to interpret AI guidelines not only as technical requirements but also as cultural artifacts that encode humanist principles. Evaluating the policies through this lens highlights both areas of convergence and unresolved tensions, especially regarding how scholarly work is valued and how responsibility is assigned within increasingly automated environments.

The findings have implications for a wide range of stakeholders. For authors, understanding policy boundaries supports responsible and transparent AI use. For reviewers and editors, these insights reinforce shared norms in evaluation and help clarify appropriate uses of AI-driven tools. For the broader academic community, the discussion contributes to ongoing debates about how digital technologies shape knowledge production and what forms of human judgment remain essential within scholarly communication.

By situating AI policies within wider concerns about ethics, technology, and cultural practice, this article offers a humanist account of the shifting relationship between digital tools and academic work. It argues that the challenges posed by generative AI cannot be addressed through regulation alone. Instead, they require sustained critical inquiry into the human values that underpin scholarly knowledge, and into how these values can be preserved as digital infrastructures continue to evolve.

Analytical Framework and Materials

To situate the analysis within ongoing debates about digital humanism and scholarly communication, this study draws on documentary analysis and qualitative comparative interpretation. The discussion first engages key literature on digital humanism to establish the ethical and theoretical lens through which AI governance in academic publishing is examined. Building on this framework, the article analyzes the publicly available AI policies of five major publishers—Elsevier, Taylor & Francis, Springer Nature, Sage Publishing, and Cambridge University Press—retrieved from their institutional websites on 12 November 2025. These publishers were selected because they represent a range of scholarly communication infrastructures, from large commercial platforms to a university press with distinct governance traditions.

The analysis focuses on how these policies articulate norms related to authorship, peer review, transparency, accountability, and human oversight, and interprets these norms through the conceptual commitments of digital humanism. AI tools were used in limited, disclosed capacities during the research process—for targeted literature searches, preliminary summarization of complex texts, thematic clustering, and linguistic refinement. All AI-assisted outputs were verified by the researcher, and the interpretive claims and arguments presented in this paper are entirely the author's own.

Overview of Core Principles of Digital Humanism

Digital humanism has emerged as an interdisciplinary response to the expanding presence of digital technologies in everyday life. It offers a framework for analyzing, critiquing, and shaping technological development in ways that preserve human agency and uphold humanist values. While digital humanism is not a monolithic framework and is shaped by diverse secular and religious worldviews, this article focuses on the perspectives articulated by the signatories of the *Vienna Manifesto on Digital Humanism* (2019). According to the document, digital humanism “describes, analyses, and influences the complex interplay between technology and humankind with the aim of a better society and a better life while fully respecting universal human rights.” In this sense, digital humanism challenges technological trajectories that risk diminishing human reasoning, creativity, and autonomy (Coeckelbergh, 2024). It instead calls for a value-driven technological landscape grounded in ethics and human welfare rather than purely commercial or technical imperatives (Zuber et al., 2024; IEEE, n.d.).

Central to this perspective is the recognition that humans and digital technologies co-evolve (Prem, 2022; 2024; Nowotny, 2022; Werthner, 2024). Instead of simply functioning as external tools, technologies shape human habits, cognition, and social structures. This influence is reciprocal in nature. Humans design and regulate technologies, but those technologies in turn shape how societies think, communicate, and organize themselves (Lucci & Osti, 2024). As Pezzano (2024) notes, digital systems challenge prevailing ideas about what it means to be human and raise questions about the nature of existence itself. Digital technology thus transforms both the external world and internal states of meaning and identity.

A key principle of digital humanism is the safeguarding of human agency. It rejects technological determinism, which espouses the idea that technological progress follows an inevitable path beyond human influence (Werthner et al., 2024). Coeckelbergh (2024)

criticizes this deterministic view for discouraging accountability and for legitimizing harmful decisions in the name of progress. Digital humanism instead insists that technological development must be directed toward the common good and not confined to narrow corporate or governmental interests (Timmers, 2024). This requires aligning digital innovation with ethical standards and internationally recognized human rights (Pezzano, 2024; Weippl & Schrittweis, 2024; Werthner, 2020). The approach extends humanist traditions grounded in the Renaissance and Enlightenment, emphasizing reason, autonomy, and the ethical use of knowledge (Pezzano, 2024; Nida-Rümelin & Weidenfeld, 2018).

Human agency is also expressed collectively when individuals and institutions use technology to strengthen democratic participation and social cohesion (Knees et al., 2024; Akkermans, 2024). As misinformation, algorithmic bias, and platform monopolies proliferate, scholars warn that digital systems must be governed to support democratic values rather than undermine them (Werthner, 2024; Werthner et al., 2022). The dangers of unregulated platforms are evident in cases such as Facebook's documented role in the genocide of Rohingya Muslims in Myanmar, where algorithmic amplification of hate speech contributed to offline violence (Baeza-Yates & Murgai, 2024). To prevent such harms, Weippl and Schrittweis (2024) call for "effective regulations, rules and laws, based on a broad public discourse."

Another foundational principle is human creativity (Prem, 2024). Digital humanism views creativity as a distinctively human capacity that cannot be reduced to computational processes (Koeszegi, 2024). It questions practices that subordinate human skill or originality to automated convenience (Coeckelbergh, 2024). While acknowledging that AI can generate text or images, digital humanism stresses that authentic creativity depends on intention, reflection, and social context—dimensions that no current AI system possesses (D. Winter, 2024). Human curiosity and decision-making remain the driving forces behind technological innovation itself (Werthner et al., 2022). For this reason, digital humanism argues that human creativity must be supported rather than displaced by AI systems designed primarily for efficiency or profit. Creativity is presented not only as an aesthetic ideal but also as a core component of human dignity and autonomy.

Equally essential is the principle of human responsibility. Digital humanism insists on maintaining clear distinctions between human cognition and artificial computation (Nida-Rümelin & Weidenfeld, 2022; S. Winter, 2024). Within Enlightenment traditions, humans are accountable for their actions and judgments (Nida-Rümelin & Weidenfeld, 2018). Although AI can simulate reasoning, it lacks moral agency and intrinsic worth. S. Winter (2024) warns that attributing human traits to AI systems creates category errors that obscure the responsibilities intrinsic to human decision-making. Nida-Rümelin (2022) similarly argues that digital innovations intensify, rather than diminish, the need for human responsibility. Humans remain the moral agents who must justify decisions and bear their consequences.

Representing a common articulation of the digital humanist perspective, Nida-Rümelin (2022) writes:

Digital humanism demands a consistent departure from the paradigm of the machine. Neither nature as a whole nor humans should be conceived of as machines. The world is not a clock, and humans are not automata. Machines can expand, even potentiate, the scope of human agency and creative power. They can be used for the good and to the detriment of the development of humanity, but they cannot replace the human

responsibility of individual agents and the cultural and social responsibility of human societies. (p. XX)

While other values, such as human dignity, social justice, and environmental sustainability, are woven throughout digital humanist discourse, the principles of agency, creativity, and responsibility form its core. They are interconnected and mutually reinforcing, and they offer a coherent framework for evaluating how digital systems shape human life. These three principles guide the analysis of the AI policies examined in this study.

Benefits and Challenges of Integration of AI in Academic Publishing

Although generative AI is a recent development, it has quickly become a prominent part of academic work. Its rapid uptake has brought both practical advantages and significant ethical questions. AI now assists writers and reviewers in accelerating many stages of research preparation and evaluation. Tools such as ChatGPT, Grammarly, DALL-E, and iThenticate are increasingly embedded in everyday scholarly workflows, where they help refine language, detect plagiarism, generate outlines, brainstorm ideas, and summarize complex texts. At the same time, their growing use has intensified debates about authorship, originality, and academic integrity (Okina et al., 2024; Kousha & Thelwall, 2024; Miao et al., 2024).

Benefits of AI Integration in Academic Writing and Peer Review

A growing body of research highlights the potential benefits of AI in academic writing and peer-review practices. These benefits can be grouped into three areas: efficiency, quality, and research capability.

Efficiency. AI can substantially reduce the time required for routine academic tasks. Automated support for formatting, text organization, literature searches, data analysis, and reference generation enables researchers to devote more energy to conceptual and interpretive work (Checco et al., 2021; Biswas, 2024; Pividori & Greene, 2024; Lin, 2024). Numerous studies report measurable time savings, higher task completion rates, and improved output when AI tools are used to support writing (Larios Soldevilla et al., 2025; Gupta, Kumar, & Rao, 2024). These tools can also help writers overcome initial inertia by generating outlines or preliminary phrasing (Carobene et al., 2024), offering scaffolding for novice researchers without replacing human judgment.

Quality and Linguistic Clarity. AI-assisted language tools provide immediate feedback on grammar, style, and coherence. This support can lead to improvements in readability and accuracy (Kouam, 2024; Marzuki et al., 2023). For scholars writing in a second or third language, these tools are often indispensable. As a researcher and editor working in Southeast Asia, the author sees firsthand how frequently such tools are used by scholars writing in non-native English. Yet reliance on AI can also introduce risks. Limited English proficiency may lead writers to accept AI-generated phrasing that is grammatically correct but stripped of nuance, tone, or cultural specificity. In such cases, AI can inadvertently flatten rhetorical style and obscure an author's scholarly voice. Moreover, while AI enhances surface-level clarity, it does

not resolve the structural inequities of English-dominant publishing or the assumption that fluency equates to scholarly legitimacy.

Beyond language refinement, AI tools can flag potential plagiarism, methodological inconsistencies, and discrepancies between results and conclusions (Matewa, 2024). When used transparently and with critical oversight, such tools can support integrity in academic writing.

Research Capability and Discovery. AI also expands researchers' capacity to identify, organize, and synthesize information. Tools can rapidly scan multiple papers, extract key ideas, and map conceptual relationships across texts (Miao et al., 2024; Carobene et al., 2024). Systems such as NotebookLM can analyze large sets of documents simultaneously, making it easier to compare sources and identify research gaps. Other platforms, including Scispace and Elicit, assist researchers in locating peer-reviewed articles and extracting relevant information efficiently. Their built-in chat functions also enable users to interact with the tool, explore content more deeply, and query specific aspects of the material.

Multilingual capabilities further broaden access to non-English scholarship, potentially expanding participation in global knowledge exchange (Kouam, 2024; Salman et al., 2025; Kayaalp et al., 2024). Yet these benefits come with caution. Machine translation can flatten nuance, impose Anglophone conceptual frames, or distort culturally embedded meanings. Non-native writers who translate a manuscript into English may unintentionally misrepresent their own work if the translation is not reviewed by a qualified human proofreader. Similarly, relying on AI to translate sources during the research process may lead to misinterpretations of an author's perspective when inaccuracies or cultural omissions occur in the translation.

AI in Peer Review. AI is increasingly used in peer review in ways that mirror its adoption in academic writing. Pre-screening tools identify formatting issues, plagiarism, and compliance with journal guidelines, reducing editors' initial workload (Checco et al., 2021). Systems such as iThenticate and Turnitin detect overlap and verify citation accuracy (Okina et al., 2024). Some AI-assisted platforms flag statistical or methodological anomalies, enabling reviewers to focus their attention more effectively (Sarker et al., 2024; Widhawati et al., 2024). Algorithms can also recommend suitable reviewers based on publication records and research topics (Farber, 2024; Widhawati et al., 2024), potentially improving the efficiency of reviewer selection.

AI-based language tools can support reviewers, particularly non-native English speakers, in composing clear and constructive feedback (Hosseini & Horbach, 2023; Mollaki, 2024). This may help broaden participation in peer review, a process historically shaped by linguistic and disciplinary hierarchies.

Issues of Concern in Academic Writing and Peer Review

The integration of AI into academic publishing brings ethical, legal, and practical challenges that mirror its benefits. Central among these are concerns about authorship, ownership, bias, privacy, and the preservation of critical human judgment.

Authorship and academic integrity. Most guidelines, including those from COPE (2023), prohibit listing AI systems as authors. However, distinguishing legitimate assistance from substantive content generation is increasingly difficult. Generative models can mimic human style with ease, making it harder to identify when AI has shaped arguments or contributed text in

ways that exceed acceptable assistance (Okina et al., 2024; Dergaa et al., 2023). Tools that “humanize” AI output blur the boundary even further, masking machine-generated prose and creating conditions that resemble ghost authorship. Such practices directly challenge long-standing norms of independent scholarly contribution.

Bias and representational inequity. AI systems are trained on large text corpora that often contain cultural, linguistic, and disciplinary biases. As a result, they can reproduce stereotypes or distort evidence when generating or synthesizing research (Carobene, 2023; Okina et al., 2024; Dupp, 2024). Thelwall (2019) observes that automated evaluation systems may implicitly associate “high quality” with authors from English-speaking or well-resourced institutions, thereby disadvantaging researchers from the Global South. These structural inequities undermine fairness, limit epistemic diversity, and reinforce existing hierarchies within global scholarly communication.

Privacy, security, and over-reliance. Cloud-based AI services raise legitimate concerns about confidentiality and intellectual property (Hosseini & Horbach, 2023; Salman et al., 2025). Uploading manuscripts to third-party servers risks exposing unpublished ideas, sensitive data, or proprietary research. Beyond privacy, scholars warn that over-reliance on AI tools may weaken critical thinking, originality, deep analytical engagement, and other qualities central to academic inquiry (Checco et al., 2021; Nguyen et al., 2024; Salman et al., 2025). When digital tools substitute for intellectual effort rather than support it, creativity and reflective rigor may erode.

Implications for peer review. Many of these concerns extend into peer-review processes. If AI-assisted screening tools rely on biased datasets, they may privilege dominant methodologies or established academic networks, thereby perpetuating inequities (Checco et al., 2021; Hosseini & Horbach, 2023; Kankanhalli, 2024). Limited algorithmic transparency also makes it difficult for editors or authors to understand the criteria behind automated evaluations (Seghier, 2025; Sarker et al., 2024; Miao et al., 2024). Confidentiality remains another pressing concern. AI platforms can inadvertently expose reviewer identities or manuscript content if data governance mechanisms are weak (Hosseini & Horbach, 2023; Salman et al., 2025; Widhawati et al., 2024). Finally, excessive automation risks diminishing the role of expert human judgment in assessing originality, interpretive depth, and ethical nuance—dimensions that remain beyond AI’s current capabilities (Sarker et al., 2024; Carobene et al., 2024).

Examining AI Policies of Five Prominent Publishers

The five policies under review—Elsevier, Taylor & Francis, Springer Nature, SAGE Publishing, and Cambridge University Press—represent the publishing industry’s rapid response to the emergence of generative AI. Elsevier issued an update in October 2025, while Springer Nature notes that its policy will be reviewed continuously as technologies evolve. Among the five policies examined, Elsevier and Taylor & Francis provide the most extensive and operationally detailed guidance. Both offer clear directives for authors, editors, and reviewers, specify acceptable and prohibited uses of AI, require formal disclosure, and articulate strict rules concerning images, data integrity, and confidentiality. SAGE Publishing and Springer Nature present moderately detailed guidance, though with less procedural specificity. Cambridge University Press offers the briefest framework, focusing primarily on the expectation that AI use be declared and that core authorship principles be upheld.

Taken together, the timelines and content of these documents illustrate that AI governance in scholarly publishing remains fluid and adaptive. Policies are being revised as publishers weigh technological innovation against ethical, legal, and practical concerns. The analysis highlights both convergence and divergence across policy areas, with particular attention to how each publisher expresses digital humanist values in regulating the use of AI in writing, peer review, and editorial workflows.

Essential Elements in the Policies

A review of the policies reveals substantial common ground. All five publishers affirm that AI tools may assist researchers but cannot replace human judgment or authorship. Authors retain full responsibility for the accuracy, originality, and integrity of their work. AI systems cannot be listed as authors, and every publisher requires some form of transparency regarding their use.

Most policies allow limited AI assistance for language improvement, organization, or readability. At the same time, they explicitly prohibit AI from generating original scientific content, figures, or research data. Restrictions are equally strong in the peer-review process. Elsevier, Springer Nature, and Taylor & Francis prohibit reviewers and editors from uploading manuscripts to AI tools due to confidentiality risks. SAGE allows narrowly defined language support, while Cambridge adopts a less prescriptive approach, relying on journal-level standards rather than a centralized rule.

All five publishers call for human oversight, but their mechanisms vary. Elsevier and Taylor & Francis require formal “AI declarations.” Springer Nature and SAGE take a situational approach, requiring disclosure for generative use but not for minor editing. Cambridge University Press aligns disclosure with broader expectations for citing methodological tools, asking authors to clearly explain any AI assistance.

The table below offers a comparative overview of how the five publishers regulate AI use across research, authorship, peer review, and editorial processes.

Category	Elsevier	Springer Nature	Taylor & Francis	SAGE Publishing	Cambridge University Press
AI as author	AI tools cannot be authors; humans retain accountability.	LLMs don't meet authorship criteria.	AI cannot be listed as author; authors accountable.	AI bots (e.g., ChatGPT) cannot be authors.	AI does not meet authorship requirements; authors accountable.
Disclosure of AI use	“AI Declaration” required; name tool, purpose, oversight; grammar checks need no disclosure.	Declare AI use in Methods (or suitable section); pure copy-editing need not be declared.	State tool (with version), how/why used in Methods/Acknowledgments.	Disclose generative use; specify model and purpose in Methods/Acknowledgments; assistive grammar/style needs no disclosure.	AI use must be declared and clearly explained, akin to other tools; journals may add requirements.

AI use in writing	Allowed for support (organization/readability/syntax) with human oversight; not a substitute for human judgment.	Allowed for copy-editing (readability/style) only; no autonomous content creation.	Responsible use welcomed for idea generation/language improvement; authors must verify accuracy.	Assistive tools for grammar/structure OK (no disclosure); generative content requires disclosure and verification.	Permitted when declared; cannot replace scholarly judgment/originality.
AI in image creation	Prohibited for generated/edited images except when part of research method (must be described/reproducible).	Generally prohibited; narrow exceptions (e.g., verifiable domain-specific tools), must be labeled.	Not permitted to create/manipulate figures or data.	Generative images require disclosure; subject to editorial evaluation.	Not specified; image integrity governed by general CUP publishing ethics and journal-level policies
AI in peer review/editorial work	Editors/reviewers must not upload manuscripts to AI tools; confidentiality risk.	Reviewers should not upload manuscripts to generative AI; may declare limited tool support.	Editors/reviewers must not upload manuscripts or materials to AI tools.	Reviewers may use AI only to polish language; no AI-generated reviews; editors must not use AI to write decisions.	This policy does not discuss AI use by peer reviewers or editors
Human oversight & accountability	Human critical thinking and verification required; full author responsibility.	Human accountability for final text; copy-editing exception narrowly defined.	Human review and verification mandatory across roles.	Users must verify/correct AI output; accountable for accuracy and integrity.	Authors responsible for accuracy, integrity, originality even when AI is used.
Scope & update cadence	Policy updated Oct 2025; covers books/commissioned content (journals have separate page).	Publisher notes policy will be reviewed as the field evolves (journals).	Guidance “will evolve”; applies to authors, editors, reviewers.	Applies to authors/reviewers/editors; investigations per COPE; living guidance.	Applies across Cambridge journals; journals may impose additional rules.

Similarities and Differences

Across the five publishers examined, the strongest point of convergence is the insistence that authorship and scholarly judgment remain irreducibly human. While all five prohibit AI systems from serving as authors and frame generative tools as supports rather than substitutes, the policies diverge somewhat in how they operationalize this principle. Elsevier and Taylor &

Francis offer the most expansive and procedural guidance, permitting AI-assisted structuring, language refinement, and under strict verification, limited analytical support. Springer Nature adopts a far narrower view, restricting AI's role to copy-editing while excluding any generative or interpretive contribution. SAGE attempts a middle position by distinguishing assistive from generative use, allowing the former without disclosure while requiring transparency for the latter. Cambridge University Press provides only minimal direction, emphasizing author responsibility but largely delegating interpretation to individual journals.

These differences become more pronounced in relation to images and peer review. The commercial publishers—Elsevier, Taylor & Francis, and Springer Nature—explicitly prohibit AI-generated or AI-altered figures and bar reviewers from uploading manuscripts to AI tools. These policies ground their approach in concerns about integrity and confidentiality. SAGE permits narrowly defined language polishing during peer review but bans AI-generated reports, while Cambridge again remains implicit, relying on general norms rather than explicit AI governance. The unevenness of these policies suggests that, although publishers share a rhetorical commitment to protecting human creativity and judgment, they diverge in how far they are willing—or able—to institutionalize these commitments through enforceable mechanisms.

Viewed through the lens of digital humanism, such divergences raise important questions about how humanist values are translated into regulatory practice. All five policies rhetorically invoke human agency, creativity, and responsibility, yet they do so unevenly. Elsevier and Taylor & Francis operationalize agency through explicit oversight requirements and formal disclosure protocols. Springer Nature and SAGE, on the other hand, foreground creativity by emphasizing that generative systems cannot replicate human critical reasoning. Cambridge's principle-based approach affirms human responsibility but risks leaving authors and editors without concrete guidance for navigating cases where AI support is ambiguous or contested.

This unevenness points to a broader tension within digital humanism. Philosophical commitments such as autonomy, ethical intentionality, and accountability are difficult to embed in institutional workflows shaped by commercial imperatives, disciplinary conventions, and unequal resource capacities. The policies also leave several structural questions unresolved. What counts as an “acceptable” degree of AI assistance, especially for writers who come from diverse linguistic backgrounds? How should publishers address the cultural and linguistic inequities that AI-driven writing tools may intensify? And how can policies adapt as generative systems become more deeply integrated into research infrastructures?

While the policies point toward a human-centered approach to AI, their implementation remains fragmented. The variability across publishers suggests that digital humanism is not a fixed normative framework but an ongoing negotiation shaped by institutional constraints, competing values, and asymmetries of power in global scholarly communication. A critical digital humanist perspective therefore calls for more than clearer policy language. It requires collaborative and reflexive forms of governance that can respond to the rapid evolution of generative technologies and the complex social contexts in which they are used.

Academic Integrity in AI Integration as Expression of Digital Humanism

Despite their ambiguities, the five policies collectively articulate a normative vision grounded in the digital humanist values of agency, creativity, and responsibility. These values seek to regulate emerging technologies without relinquishing human judgment to automated systems.

Human Agency in Academic Work

The policies align closely with digital humanism's insistence on preserving human agency amid expanding algorithmic systems. All five publishers state that decision-making must remain under human oversight and that authors retain full responsibility for the integrity of their work. Elsevier and Taylor & Francis reinforce this through mandatory disclosure and verification requirements. Springer Nature and SAGE limit AI use to copy-editing or language assistance. Cambridge University Press adopts a broader but less procedural approach, requiring transparency but leaving implementation to individual journals. Across all five, transferring agency to digital systems is framed as incompatible with academic integrity because it risks treating probabilistic outputs as objective truth. As Nowotny (2022) warns, such reliance can create a “self-fulfilling algorithmic prophecy,” in which automated inference crowds out human judgment.

Integrity in research and peer review depends on preserving uniquely human capacities such as contextual reasoning, interpretation, and ethical reflection. As Nida-Rümelin and Weidenfeld (2022a) argue, genuine authorship requires open-ended reasoning rather than algorithmic predetermination. This ethos is echoed in Elsevier’s call for “human oversight and control” and in Taylor & Francis’s reminder that AI must not “replace core researcher and author responsibilities.” Maintaining agency within scholarly processes also models a civic ethic. When decision-making in domains such as policy or media is surrendered to algorithmic systems, democratic participation and public accountability are put at risk (Metakides, 2024). Digital humanism therefore insists that technology serve human needs and values, not the reverse (Pezzano, 2024), preventing what Timmers (2024) describes as “digital slavery.”

Human Creativity in Scholarly Communication

Creativity, whether scientific or artistic, is inseparable from human autonomy and meaning-making. The policies reflect this by prohibiting AI from generating original content or conceptual innovation. While the publishers recognize that AI may support summarization or language refinement, they insist that intellectual contribution must come from the author. This stance mirrors digital humanism’s rejection of the mechanistic view that human creativity can be reduced to computation. As Nida-Rümelin and Weidenfeld (2022a) note, “strong AI” risks collapsing imagination into predictive processing.

Elsevier and Taylor & Francis explicitly forbid the use of generative tools for producing research text or imagery. Springer Nature and SAGE impose similar restrictions through verification and disclosure rules. Cambridge affirms author accountability even with limited procedural detail. These positions reflect the conviction that creativity involves moral depth, interpretive flexibility, and the capacity to question inherited paradigms—qualities that current AI systems cannot replicate. As S. Winter (2024) observes, AI-generated text recombines existing data rather than producing genuinely new meaning. Academic progress depends on critical imagination, not informational efficiency. In this sense, responsible AI use requires exercising creativity in how digital tools are employed, rather than outsourcing creativity itself (Nida-Rümelin & Weidenfeld, 2022c).

Human Responsibility and Academic Integrity

Responsibility is the most explicit and operationalized digital humanist value across the five policies. Each publisher frames responsibility as a non-transferable duty. AI may assist, but it cannot assume authorship, accountability, or ethical reasoning. Even Cambridge's brief policy stresses accountability twice in just over one hundred words. Elsevier references responsibility and accountability repeatedly and requires detailed disclosure. Taylor & Francis and SAGE mandate explicit statements outlining how AI tools were used. Springer Nature and Cambridge treat AI similarly to other research tools whose use must be transparent and verifiable. All policies require authors to verify AI-assisted content and correct inaccuracies.

Scholars such as Fordyce (2019) and Friedman et al. (2002) remind us that technological responsibility involves more than avoiding harm; it requires designing systems to promote dignity, fairness, and democratic participation. Koeszegi (2024) warns that yielding responsibility to algorithms is tantamount to yielding autonomy. In practice, maintaining integrity through active verification and disclosure aligns with what Schiaffonati (2024) calls "active responsibility." This ensures that scholarship remains grounded in human deliberation rather than automated evaluation.

More broadly, digital humanism views responsibility as a foundation of technological civilization. Regardless of how advanced AI becomes, humans—and not machines—must remain the agents who decide, deliberate, and justify. The five publishers' AI policies thus serve as microcosms of a larger ethical vision in which technology should enhance, not erode, accountability. Efficiency may tempt scholars to over-rely on automation, but expedience cannot replace intellectual honesty or moral discernment. Upholding responsibility helps ensure that scholarship remains rigorous, transparent, and distinctly human.

In sum, the AI policies of the five publishers affirm the enduring relevance of agency, creativity, and responsibility in safeguarding academic integrity. From the perspective of digital humanism, these policies show a notable degree of convergence regarding appropriate AI integration in scholarly work. This does not imply that publishers are consciously adopting digital humanism as a framework. Rather, the affinities between their policies and digital humanist principles point to shared concerns about the role of technology in human knowledge production. These shared concerns create opportunities for continued dialogue among publishers and other stakeholders. In this evolving conversation, the principles of agency, creativity, and responsibility offer a guiding ethic, one that continually reminds the academic community that technological progress must remain accountable to human values.

Conclusion

The AI policies of Elsevier, Taylor & Francis, SAGE Publishing, Springer Nature, and Cambridge University Press collectively reaffirm the digital humanist principles of human agency, creativity, and responsibility. Although they differ in restrictiveness, procedural detail, and disclosure requirements, all five agree that AI should support rather than replace human judgment. In this sense, the policies align with the ideals of digital humanism, which call for technologies that uphold human dignity, ethical reasoning, and democratic participation rather than diminish them.

At the same time, the translation of these values into practice is uneven. The publishers differ in the depth, rationale, and enforcement of their rules, illustrating the difficulty of embedding

abstract ethical principles such as accountability and creativity within complex institutional and legal settings. Cambridge University Press adopts a principle-based approach that emphasizes author responsibility and transparency but leaves detailed implementation to individual journals. This differs from the more formalized oversight structures of large commercial publishers such as Elsevier and Taylor & Francis, and from the context-sensitive frameworks used by Springer Nature and SAGE. Such variation shows how institutional structure, governance culture, and resource capacity shape the ways digital humanist values are interpreted and operationalized.

Looking ahead, the integration of AI into academic publishing should not be treated as a fixed regulatory endpoint. Instead, it is an ongoing process of ethical reflection that requires continued dialogue among publishers, researchers, technologists, and policymakers.

Collaborative initiatives, such as cross-publisher workshops on disclosure standards, AI ethics training for authors and reviewers, and interdisciplinary research on AI's impact on creativity and authorship, can help address emerging challenges. These conversations must also consider how experiences differ across linguistic and cultural contexts. The concerns of fluent English writers often diverge from those of scholars working in non-English-speaking environments. Exchanges across these communities can therefore support more context-sensitive policies that avoid rigid, one-size-fits-all rules.

Because this study focuses on five publishers, its findings should be read as indicative rather than exhaustive. Many smaller publishers and individual journals have yet to develop formal AI policies, and future research could expand this comparative analysis to include a wider range of linguistic and cultural settings. Longitudinal studies would also deepen understanding of how AI policies evolve as generative technologies become more tightly woven into research practices and scholarly communication.

The challenge, undoubtedly, is not only to regulate AI but to reimagine the nature of scholarship in a digitally mediated world. Amid rapid technological change, it remains essential to uphold human agency, creativity, and responsibility, not only as policy requirements but as the foundations of academic inquiry itself. By grounding technological innovation in these enduring values, academic publishers and researchers can shape AI's role in ways that preserve the integrity, diversity, and humanity of knowledge production. The continued evolution of AI therefore calls for an equally evolving commitment to the ethical, cultural, and epistemic principles that make scholarship a distinctly human endeavor.

REFERENCES

Akkermans, H. (2024). The social responsibilities of scientists and technologists in the digital age. In H. Werthner et al. (Eds.), *Introduction to digital humanism* (pp. 65-82). Springer, Cham. https://doi.org/10.1007/978-3-031-45304-5_5

Baeza-Yates, R., & Murgai, L. (2024). Bias and the web. In H. Werthner et al. (Eds.), *Introduction to digital humanism* (pp. 435-462). Springer, Cham. https://doi.org/10.1007/978-3-031-45304-5_28

Bennaceur, A., Ghezzi, C., Kramer, J., & Nuseibeh, B. (2024). Responsible software engineering: Requirements and goals. In H. Werthner et al. (Eds.), *Introduction to digital humanism* (pp. 299-316). Springer, Cham. https://doi.org/10.1007/978-3-031-45304-5_20

Biswas, S. S. (2024). AI-assisted academia: Navigating the nuances of peer review with ChatGPT-4. *Journal of Pediatric Pharmacology and Therapeutics*, 29(4), 441–445. <https://doi.org/10.5863/1551-6776-29.4.441>

Butson, R., & Spronken-Smith, R. (2024). AI and its implications for research in higher education: A critical dialogue. *Higher Education Research & Development*, 43(3), 563–577. <https://doi.org/10.1080/07294360.2023.2280200>

Cambridge University Press. (2023). Publishing Ethics.” <https://www.cambridge.org/core/services/publishing-ethics/authorship-and-contributorship-journals#ai-contributions-to-research-content>

Carobene, A., Padoan, A., Cabitza, F., Banfi, G., & Plebani, M. (2024). Rising adoption of artificial intelligence in scientific publishing: Evaluating the role, risks, and ethical implications in paper drafting and review process. *Clinical Chemistry and Laboratory Medicine*, 62(5), 835–843. <https://doi.org/10.1515/cclm-2023-1136>

Checco, A., Bracciale, L., Loretì, P., Pinfield, S., & Bianchi, G. (2021). AI-assisted peer review. *Humanities and Social Sciences Communications*, 8(1), 25. <https://doi.org/10.1057/s41599-020-00703-8>

Choi, E. P. H., Lee, J. J., Ho, M. H., Kwok, J. Y. Y., & Lok, K. Y. W. (2023). Chatting or cheating? The impacts of ChatGPT and other artificial intelligence language models on nurse education. *Nurse Education Today*, 125, 105796. <https://doi.org/10.1016/j.nedt.2023.105796>

Coeckelbergh, M. (2024). What is digital humanism? A conceptual analysis and an argument for a more critical and political digital (post)humanism. *Journal of Responsible Technology*, 17, 100073. <https://doi.org/10.1016/j.jrt.2023.100073>

COPE Council. (2023). COPE position—Authorship and AI—English. <https://doi.org/10.24318/cCVRZBms>

Dergaa, I., Chamari, K., Zmijewski, P., & Ben Saad, H. (2023). From human writing to artificial intelligence-generated text: Examining the prospects and potential threats of ChatGPT in academic writing. *Biology of Sport*, 40(2), 615–622. <https://doi.org/10.5114/biolsport.2023.125623>

Dupps, W. J. (2023). Artificial intelligence and academic publishing. *Journal of Cataract and Refractive Surgery*, 49(7), 655–656. <https://doi.org/10.1097/j.jcrs.0000000000001223>

Elsevier. (2025). *The use of generative AI and AI-assisted technologies in writing for Elsevier*. <https://www.elsevier.com/about/policies-and-standards/the-use-of-generative-ai-and-ai-assisted-technologies-in-writing-for-elsevier>

Farber, S. (2024). Enhancing peer review efficiency: A mixed-methods analysis of artificial intelligence-assisted reviewer selection across academic disciplines. *Learned Publishing*, 37(4), e1638. <https://doi.org/10.1002/leap.1638>

Fordyce, S. (2019). Value-sensitive design: Shaping technology with moral imagination. *Design and Culture*, 12, 109–111.

Friedman, B., Kahn, P. H., & Bornung, A. (2002). Value-sensitive design: Theory and methods. *UW CSSE Report*. <https://www.scribd.com/document/448586629/Value-Sensitive-Design-Theory-and-Methods>

Gupta, M. S., Kumar, N., & Rao, V. (2024, December). AI and teacher productivity: A quantitative analysis of time-saving and workload reduction in education. In *Proceedings of the International Conference on Advancing Synergies in Science, Engineering, and*

Management (ASEM-2024), Glocal University, Delhi-Yamunotri Marg (State Highway 57), Mirzapur Pole, Saharanpur, U.P.

Hosseini, M., & Horbach, S. P. J. M. (2023). Fighting reviewer fatigue or amplifying bias? Considerations and recommendations for use of ChatGPT and other large language models in scholarly peer review. *Research Integrity and Peer Review*, 8(1), 4. <https://doi.org/10.1186/s41073-023-00133-5>

IEEE. (n.d.). *IEEE SA—The IEEE global initiative on ethics of autonomous and intelligent systems*. <https://standards.ieee.org/industry-connections/ec/autonomous-systems.html>

Kankanhalli, A. (2024). Peer review in the age of generative AI. *Journal of the Association for Information Systems*, 25(1), 76–84. <https://doi.org/10.17705/1jais.00865>

Kayaalp, M. E., et al. (2024). Embrace responsible ChatGPT usage to overcome language barriers in academic writing. *Knee Surgery, Sports Traumatology, Arthroscopy*, 32(1), 5–9. <https://doi.org/10.1007/s00167-024-07843-3>

Khalifa, M., & Albadawy, M. (2024). Using artificial intelligence in academic writing and research: An essential productivity tool. *Computers in Methods and Programs in Biomedicine Updates*, 5, 100145. <https://doi.org/10.1016/j.cmpbup.2024.100145>

Knees, P., Neidhardt, J., & Nalis, I. (2024). Recommender systems: Techniques, effects, and measures toward pluralism and fairness. In H. Werthner, E. Prem, & C. Huemer (Eds.), *Introduction to digital humanism* (pp. 417–434). Springer, Cham. https://doi.org/10.1007/978-3-031-45304-5_27

Koeszegi, S. T. (2024). AI @ work: Human empowerment or disempowerment? In H. Werthner, E. Prem, & C. Huemer (Eds.), *Introduction to digital humanism* (pp. 175–196). Springer, Cham. https://doi.org/10.1007/978-3-031-45304-5_12

Kouam Arthur William, F. (2024). AI in academic writing: Ally or foe? *International Journal of Research Publications*, 148(1). <https://doi.org/10.47119/IJRP1001481520246427>

Kousha, K., & Thelwall, M. (2024). Artificial intelligence to support publishing and peer review: A summary and review. *Learned Publishing*, 37(1), 4–12. <https://doi.org/10.1002/leap.1570>

Larios Soldevilla, O. A., Mendoza Ibarra, V., Urdanegui Sibina, R., Zilberman, J., Lizola-Margolis, P. E., Flores Peralta, A. V., ... Aviles Valdez, J. R. (2025). *Adoption of AI tools and their impact on the academic research output of business school students*. *Cogent Education*, 12(1). <https://doi.org/10.1080/2331186X.2025.2556892>

Lin, Z. (2024). Techniques for supercharging academic writing with generative AI. *Nature Biomedical Engineering*, 2(3), 1–3. <https://doi.org/10.1038/s41551-024-01185-8>

Lucci, A., & Osti, A. (2024). Exit (digital) humanity: Critical notes on the anthropological foundations of “digital humanism.” *Journal of Responsible Technology*, 17, 100077. <https://doi.org/10.1016/j.jrt.2024.100077>

Marzuki, Widiati, U., Rusdin, D., Darwin, & Indrawati, I. (2023). The impact of AI writing tools on the content and organization of students’ writing: EFL teachers’ perspective. *Cogent Education*, 10(2). <https://doi.org/10.1080/2331186X.2023.2236469>

Matewa, J. (2024, November 16). Using AI to detect plagiarism in manuscripts: How effective is it? *Spines*. <https://spines.com/using-ai-to-detect-plagiarism/>

Melisa, R., Ashadi, A., Triastuti, A., Hidayati, S., Salido, A., Ero, P. E. L., Marlini, C., Zefrin., & Fuad, Z. A. (2025). Critical Thinking in the Age of AI: A Systematic Review of AI's Effects on Higher Education. *Educational Process: International Journal*, 14, e2025031. <https://doi.org/10.22521/edupij.2025.14.31>

Metakides, G. (2024). Democracy in the digital era. In H. Werthner, E. Prem, & C. Huemer (Eds.), *Introduction to digital humanism* (pp. 495-510). Springer, Cham. https://doi.org/10.1007/978-3-031-45304-5_31

Miao, J., Thongprayoon, C., Suppadungsuk, S., Garcia Valencia, O. A., Qureshi, F., & Cheungpasitporn, W. (2023). Ethical dilemmas in using AI for academic writing and an example framework for peer review in nephrology academia: A narrative review. *Clinics and Practice*, 14(1), 89–105. <https://doi.org/10.3390/clinpract14010008>

Mollaki, V. (2024). Death of a reviewer or death of peer review integrity? The challenges of using AI tools in peer reviewing and the need to go beyond publishing policies. *Research Ethics*, 20(2), 239–250. <https://doi.org/10.1177/17470161231224552>

Nguyen, A., Hong, Y., Dang, B., & Huang, X. (2024). Human-AI collaboration patterns in AI-assisted academic writing. *Studies in Higher Education*, 49(5), 847–864. <https://doi.org/10.1080/03075079.2024.2323593>

Nida-Rümelin, J. (2021). Digital humanism and the limits of artificial intelligence. In *Perspectives on digital humanism* (pp. 71–75). Springer International Publishing. https://doi.org/10.1007/978-3-030-86144-5_10

Nida-Rümelin, J., & Weidenfeld, N. (2018). *Digital humanism*. Munich, Germany: Piper.

Nida-Rümelin, J., & Weidenfeld, N. (2022a). The problem of autonomy and determination in the digital world. In *Digital humanism* (pp. 19-24). Springer, Cham. https://doi.org/10.1007/978-3-031-12482-2_4

Nida-Rümelin, J., & Weidenfeld, N. (2022b). The world as the perfect machine universe. In *Digital humanism* (pp. 25-30). Springer, Cham. https://doi.org/10.1007/978-3-031-12482-2_5

Nida-Rümelin, J., & Weidenfeld, N. (2022c). Afterword. In *Digital humanism* (pp. 121-124). Springer, Cham. https://doi.org/10.1007/978-3-031-12482-2_21

Nowotny, H. (2022). Digital humanism: Navigating the tensions ahead. In H. Werthner, E. Prem, E. A. Lee, & C. Ghezzi (Eds.), *Perspectives on digital humanism* (pp. 317-322). Springer, Cham. https://doi.org/10.1007/978-3-030-86144-5_43

Okina, M., et al. (2024). Exploring ethical frontiers: A survey into the prevalence of artificial intelligence in academic writing. *Journal of Computer Sciences and Informatics*, 1(1), 1. <https://doi.org/10.5455/JCSI.20240515052807>

Pezzano, G. (2024). Are we done with (wordy) manifestos? Towards an introverted digital humanism. *Journal of Responsible Technology*, 17, 100078. <https://doi.org/10.1016/j.jrt.2024.100078>

Pividori, M., & Greene, C. S. (2024). A publishing infrastructure for artificial intelligence (AI)-assisted academic authoring. *Journal of the American Medical Informatics Association*, 31(9), 2103–2113. <https://doi.org/10.1093/jamia/ocae139>

Prem, E. (2022). Our digital mirror. In *Perspectives on digital humanism* (pp. 199–214). Springer. https://doi.org/10.1007/978-3-030-86144-5_13

Prem, E. (2024). Principles of digital humanism: A critical post-humanist view. *Journal of Responsible Technology*, 17, 100075. <https://doi.org/10.1016/j.jrt.2024.100075>

Sage Publishing. (2025). *Artificial intelligence policy*. <https://us.sagepub.com/en-us/nam/artificial-intelligence-policy>

Salman, H. A., Ahmad, M. A., Ibrahim, R., & Mahmood, J. (2025). Systematic analysis of generative AI tools integration in academic research and peer review. *Online Journal of*

Communication and Media Technologies, 15(1), e202502.

<https://doi.org/10.30935/ojcmt/15832>

Samantaray, R., & Azeez, A. (2024). AI tools for efficient writing and editing. In R. Samantaray & A. Azeez (Eds.), *Utilizing AI tools in academic research writing*. IGI Global.

<https://doi.org/10.4018/979-8-3693-1798-3.ch004>

Sarker, S., University of Virginia, Susarla, A., Michigan State University, Gopal, R., University of Warwick, & Thatcher, J. B., University of Colorado / University of Manchester. (2024). Democratizing knowledge creation through human-AI collaboration in academic peer review. *Journal of the Association for Information Systems*, 25(1), 158–171.

<https://doi.org/10.17705/1jais.00872>

Schiaffonati, V. (2024). Promises and perils in moralizing technologies. In H. Werthner, E. Prem, & C. Huemer (Eds.), *Introduction to digital humanism* (pp. 255-266). Springer, Cham.

https://doi.org/10.1007/978-3-031-45304-5_17

Seghier, M. L. (2025). AI-powered peer review needs human supervision. *Journal of Information, Communication and Ethics in Society*, 23(1), 104–116.

<https://doi.org/10.1108/JICES-09-2024-0132>

Springer Nature. (2025). *Artificial intelligence (AI)*. https://www.springer.com/gp/editorial-policies/artificial-intelligence--ai-25428500?srsltid=AfmBOooBixn0NAxcAkoEDyd8wQKOxiNTx2DlyhsnL_qeIcGJ7M_HfT_0

Taylor & Francis. (2025). *AI policy*. Retrieved from <https://taylorandfrancis.com/our-policies/ai-policy/>

Thelwall, M. A. (2019). *Artificial intelligence, automation and peer review*. Retrieved from https://repository.jisc.ac.uk/7614/1/AI_and_peer_review_briefing_paper.pdf

Timmers, P. (2024). Sovereignty in the digital age. In H. Werthner, C. Ghezzi, J. Kramer, J. Nida-Rümelin, B. Nuseibeh, E. Prem, & A. Stanger (Eds.), *Introduction to digital humanism* (pp. 571-592). Springer, Cham. https://doi.org/10.1007/978-3-031-45304-5_36

Werthner, H., Prem, E., Lee, E. A., & Ghezzi, C. (2019). Vienna manifesto on digital humanism. In *Perspectives on digital humanism*, 2022 (pp. xi–xiv). Springer, Cham.

Weippl, E., & Schrittwieser, S. (2024). Introduction to security and privacy. In H. Werthner, C. Ghezzi, J. Kramer, J. Nida-Rümelin, B. Nuseibeh, E. Prem, & A. Stanger (Eds.). *Introduction to digital humanism*. Springer, Cham. https://doi.org/10.1007/978-3-031-45304-5_26

Werthner, H. (2020). The Vienna manifesto on digital humanism. In *Digital transformation and ethics* (pp. 338–357). Ecowin.

Werthner, H. (2024). Digital transformation, digital humanism: What needs to be done. In H. Werthner, C. Ghezzi, J. Kramer, J. Nida-Rümelin, B. Nuseibeh, E. Prem, & A. Stanger (Eds.), *Introduction to digital humanism* (pp. xx-xx). Springer, Cham.

https://doi.org/10.1007/978-3-031-45304-5_8

Werthner, H., Ghezzi, C., Kramer, J., Nida-Rümelin, J., Nuseibeh, B., Prem, E., & Stanger, A. (Eds.). (2024). *Introduction to digital humanism: A textbook*. Springer Nature Switzerland. <https://doi.org/10.1007/978-3-031-45304-5>

Werthner, H., Prem, E., Lee, E. A., & Ghezzi, C. (Eds.). (2022). *Perspectives on digital humanism*. Springer International Publishing. <https://doi.org/10.1007/978-3-030-86144-5>

Widhawati, R., Purnama, S., Purwoko Putro, H., Gantari, L., & Rahagi, S. (2024).

Computational support in academic peer review: An artificial intelligence perspective.

ADI Journal on Recent Innovation (AJRI), 6(1), 74–80.

<https://doi.org/10.34306/ajri.v6i1.1106>

Winter, D. (2024). Aesthetic aspects of digital humanism: An aesthetic-philosophical analysis of whether AI can create art. In H. Werthner, C. Ghezzi, J. Kramer, J. Nida-Rümelin, B. Nuseibeh, E. Prem, & A. Stanger (Eds.), *Introduction to digital humanism* (pp. 211-224). Springer, Cham. https://doi.org/10.1007/978-3-031-45304-5_14

Winter, S. (2024). The road less taken: Pathways to ethical and responsible technologies. In H. Werthner, C. Ghezzi, J. Kramer, J. Nida-Rümelin, B. Nuseibeh, E. Prem, & A. Stanger (Eds.), *Introduction to digital humanism* (pp. 267-282). Springer, Cham. https://doi.org/10.1007/978-3-031-45304-5_18